A NEW TYPE OF CARBONIUM ION REARRANGEMENT. CYCLIZATION OF 3,4-DIPHENYLBUT-3-EN-2-ONE OXIME BENZOATE TO 1-PHENYL-3-METHYLISOQUINOLINE

Stefan Goszczyński

Poznań Technical University, Poznań, Poland

and

Ewa Salwińska

Silesian Technical University, Gliwice, Poland (Received in UK 21 June 1971; accepted in UK for publication 7 July 1971)

It has been known for some years that oximes of β -aryl- α , β -unsaturated carbonyl compounds are able to undergo ring closure yielding the corresponding quinoline derivatives. This reaction is an example of a recently discovered formation of c_{benzoid}^{-N} bond in the quinoline nucleus 1,2/.

The configuration at the ethylenic bond /cis-trans isomerism/ in the above mentioned type of oximes is the main factor influencing the cyclization yield. For example, the oxime of 4,4-diphenylbut-3-en-2-one upon heating in boiling acetic anhydride gives 2-methyl-4-phenylquinoline with greater than 90 % yield 3/. In contrast, 3,4-diphenylbut-3-en-2-one oxime yields only very small amounts of 2-methyl-3-phenylquinoline under the same conditions due to unfavourable configuration /oxime and 4-phenyl groups in trans position/ 4/.

It is very probable that this type of cyclization and the Beckmann rearrangement may be treated as parallel and simultaneous processes. Styrylacetamides formed as a result of Beckmann rearrangement are able to cyclize further leading to the isoquinoline nucleus. Styrylacetamides are not a necessary intermediate. We only have to assume the formation of a carbonium ion intermediate in the

course of isoquinoline cyclization. For example, it is known that 3,4-diphenyl-3-en-2-one oxime can give 1-methyl-3-phenylisoquinoline^{4/}. All these facts may be illustrated by the following reaction scheme:

Direct cyclization

Cyclization after Beckmann rearrangement

In the course of our investigations, we attempted the ring closure of some exters of 3,4-diphenylbut-3-en-2-one. The oxime acetate, when heated at high temperature /e.g. in decalin/ produced a mixture of mainly 2-methyl-3--phenylquinoline and 1-methyl-3-phenylisoquinoline in trace amounts. The oxime benzoate heated in refluxing nitrobenzene yields an almost pure basic product m.p. 89 - 90°C. /Found C, 87,45 %; H, 6,02 %; N, 6,40 %; M.W. 220; calculated for C₁₆H₁₃N C, 87,67 %; H, 5,98 %; N, 6,35 %; M.W. 219,27/. IR, UV, NMR and mass spectra as well as oxidative degradation are in complete agreement with the assignment of the product as 1-phenyl-3-methylisoquinoline. Physical data are in accordance with those found in literature^{5,6/}.

The unexpected and unusual course of this reaction may be rationalized as follows. The first reaction step is the Beckmann rearrangement that results in the formation of a carbonium ion:

However, in order to account for the reaction product we propose that this ion undergoes a new specific rearrangement with the following path:

The resulting carbonium ion can then effect the cyclization to the isoquinoline nucleus by direct attack on the benzene ring as shown:

The proposed mechanism excludes the cis-trans isomerisation as a necessary condition of cyclization. The energy barrier for interconversion of isomers may be relatively high and may channel the reaction course through this new, unknown till now, carbonium ion rearrangement.

REFERENCES

- 1. C. Troszkiewicz, J. Glinka, Roczniki Chemii, 36, 1387 /1962/.
- 2. C. Troszkiewicz, S. Goszczyński, ibid., 37, 919 /1963/.
- 3. S. Goszczyński, ibid., 38, 515 /1964/.
- 4. S.Goszczyński, ibid., 38, 893 /1964/.
- 5. A.Dobrovsky, Monatsh., 82, 122 /1951/.
- 6. T.N.Gosh, Bhattacharya Bhabatosh, J.Ind.Chem.Soc., 36, 425 /1959/.